Largest planar matching in random bipartite graphs
نویسندگان
چکیده
Given a distribution G over labeled bipartite (multi) graphs, G = (W; M; E) where jWj = jMj = n, let L(n) denote the size of the largest planar matching of G (here W and M are posets drawn on the plane as two ordered rows of nodes, an upper and a lower one, and a (w; m) edge is drawn as a straight line between w and m). The main focus of this work is to understand the asymptotic (in n) behavior of L(n) for diierent distributions G. Two well studied particular instances of this problem are Ulam's longest increasing subsequence problem and the longest common subsequence problem. This work's main focus is in the case where G is the uniform distribution over the k{regular bipartite graphs on W and M. For k = O(n 1=5?"), we establish that L(n)= p kn tends to 2 in probability when n ! 1. When k = O(1) the convergence in mean to the same limit holds. It is also shown that when each of the n 2 possible edges between W and M are chosen independently with probability 0 < p < 1, then L(n)=n tends to a constant p in probability and in mean when n ! 1. The problems addressed in this work can be thought of as a novel generalization of Ulam's longest increasing subsequence problem and the longest common subsequence problem.
منابع مشابه
Towards the Distribution of the Size of a Largest Planar Matching and Largest Planar Subgraph in Random Bipartite Graphs
We address the following question: When a randomly chosen regular bipartite multi– graph is drawn in the plane in the “standard way”, what is the distribution of its maximum size planar matching (set of non–crossing disjoint edges) and maximum size planar subgraph (set of non–crossing edges which may share endpoints)? The problem is a generalization of the Longest Increasing Sequence (LIS) prob...
متن کاملDistribution of the Size of a Largest Planar Matching and Largest Planar Subgraph in Random Bipartite Graphs
We address the following question: When a randomly chosen regular bipartite multi–graph is drawn in the plane in the “standard way”, what is the distribution of its maximum size planar matching (set of non–crossing disjoint edges) and maximum size planar subgraph (set of non–crossing edges which may share endpoints)? The problem is a generalization of the Longest Increasing Sequence (LIS) probl...
متن کاملPerfect Matching in Bipartite Planar Graphs is in UL
We prove that Perfect Matching in bipartite planar graphs is in UL, improving upon the previous bound of SPL (see [DKR10]) on its space complexity. We also exhibit space complexity bounds for some related problems. Summarizing, we show that, constructing: 1. a Perfect Matching in bipartite planar graphs is in UL 2. a Hall Obstacle in bipartite planar graphs is in NL; 3. an Even Perfect Matching...
متن کاملMinimum Maximal Matching Is NP-Hard in Regular Bipartite Graphs
Yannakakis and Gavril showed in [10] that the problem of finding a maximal matching of minimum size (MMM for short), also called Minimum Edge Dominating Set, is NP-hard in bipartite graphs of maximum degree 3 or planar graphs of maximum degree 3. Horton and Kilakos extended this result to planar bipartite graphs and planar cubic graphs [6]. Here, we extend the result of Yannakakis and Gavril in...
متن کاملSome perfect matchings and perfect half-integral matchings in NC
We show that for any class of bipartite graphs which is closed under edge deletion and where the number of perfect matchings can be counted in NC, there is a deterministic NC algorithm for finding a perfect matching. In particular, a perfect matching can be found in NC for planar bipartite graphs and K3,3-free bipartite graphs via this approach. A crucial ingredient is part of an interior-point...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Random Struct. Algorithms
دوره 21 شماره
صفحات -
تاریخ انتشار 2002